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Phase field model of deformation twinning in tantalum:
Parameterization via molecular dynamics
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We present a phase field model to simulate the microstructure evolution during deformation twinning in tantalum. An order
parameter, proportional to the shear strain, is employed to monitor the twinning process. The evolution of the order parameter
is governed by a time-dependent Ginzburg–Landau equation, the parameters of which are determined by molecular dynamics with
a model-generalized pseudopotential-theory potential. The twinning process is studied under a number of deformation conditions,
and compared with the molecular dynamics counterpart.
� 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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Twinning is an important deformation mecha-
nism which, like slip, involves dislocation activity. It
plays a prominent role in plasticity under extreme condi-
tions of low temperature or rapid loading [1,2]. After
nucleation at stress concentrators in the material, the
twin lamellae start to thicken. A variety of modeling
techniques have been used to study this growth process,
as a complete description of the phenomenon spans
many time and length scales, from molecular dynamics
[3] to continuum micromechanical models [4].

In this work we present a phase field model (PFM)
for deformation twinning in the body-centered cubic
(bcc) metal tantalum, similar to the model developed
by Heo et al. [5] for face-centered cubic aluminum.
The phase field model is parameterized with values cal-
culated using molecular dynamics (MD) with a model-
generalized pseudopotential-theory potential (MGPT)
potential [6], thus bridging atomic/molecular scale and
mesoscale simulations. In this study we focus on a
two-dimensional (2-D) model, although it can be easily
extended to the general 3-D case by using the appropri-
ate gradient energy coefficient, which is defined below.

Twinning in bcc metals takes place on {112} planes
along the h111i direction. It also has directionality,
which has been explained through the minimum shear
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hypothesis [7], from where there only are 12 possible twin-
ning modes.

The PFM 2-D computational cell is shown in Figure 1,
which describes the process of deformation twinning as
seen on the plane of shear (011) [2]. Under these specifi-
cations there are only two possible twinning modes,
which we have called variant 1 ðð�211Þ½�1�1�1�Þ and variant
2 ðð21 1Þ½1�1�1�Þ. The corresponding habit planes are
related via a rotation of h = 70.53�. A new coordinate
system (x0,y0,z0) is defined along the ½�10 0�; ½0�1�1� and
½0�11�, respectively, which is also used in the MD
simulations.

As has been previously established [5], 2-D simula-
tions on the (011) plane requires only two order param-
eters, g1 and g2; that is, two spatially dependent fields,
g1(r) and g2(r), are sufficient to describe the twinning
microstructures (12 for a general 3-D case). If defined
in the specifically chosen local reference frame (the x-
axis is defined along the twinning direction, the y-axis
is defined along the direction normal to habit plane
and the z-axis is determined by right-hand rule), the
pure shear strain tensor is
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Figure 1. Crystallographic description of twinning for both variants
(blue for variant 1, orange for variant 2). (a) Coordinate system set-up
in a unit cell. (b) Configuration of the habit planes for both variants on
the (011) plane. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

452 Y. Gu et al. / Scripta Materialia 68 (2013) 451–454
�2;ref
i;j ¼

0 �s=2 0

�s=2 0 0

0 0 0

0
B@

1
CA ð2Þ

for variants 1 and 2, respectively, where s ¼
ffiffiffi
2
p

=2 is the
maximum magnitude of shear [2]. Transforming to the
new coordinate system ðx0½�100�; y0½0�1�1�; z0½0�11�Þ, we
get, for both variants,
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Assuming a linear dependence, the deformation
strain tensor of variant p is then given by �

ðpÞ
ij ¼ gp�

p
ij,

where gp is the order parameter describing the twinning
process of variant p.

The evolution of order parameters is governed by the
time-dependent Ginzburg–Landau (TDGL) equation,
Figure 2. Deformation energy as a function of shear strain. The
dashed line corresponds to an eighth-order polynomial fitting.

Figure 3. (a–d), MD simulations: (a) 2 ps, (b) 6 ps, (c) 18 ps, (d) 48 ps;
(e–h), phase field simulations: (e) 1000 steps, (f) 5000 steps, (g) 15,000
steps, (h) 40,000 steps.
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where t is time, F is the total free energy and L is the ki-
netic coefficient.

With the diffuse-interface description, the following
volume integral gives the total free energy F of the
system
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Figure 4. Volume fraction of twins as a function of simulation time.
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where f is the local deformation energy density, jp
ij is the

gradient energy coefficient tensor for the pth order
parameter, Cijkl is the elastic moduli, �ij is the local strain
tensor, �0

ij is the eigenstrain tensor and X stands for the
domain of interest. In order to bridge the phase field
model and the MD, we get the energy function f, and
the coefficients L; jp

ij, and Cijkl, via MD simulations.
The interatomic potential adopted in the MD simula-
tions is a quantum-based, multi-body MGPT potential
[6], which has been successfully applied to a broad range
of temperatures, pressures and strains [8].

We computed the deformation energy along the twin-

ning path via a homogeneous shear of the crystal, which is

shown in Figure 2. At 0 GPa the energy barrier obtained

has a value of 0.20 eV atom�1, located at a shear strain

value of
ffiffiffi
2
p

=4, quite close to the first principles result of

0.197 eV atom�1 [9]. The curve was fitted, after normali-

zation f � ¼ f
jDfmax j, to the eighth-order polynomial

f* = A0 + A2(g � 0.5)2 + A4(g � 0.5)4 + A6 (g � 0.5)6

+ A8(g � 0.5)8. The values of the coefficients are

A0 = 1.0, A2 = �11.1, A4 = 46.9, A6 = �96.2 and

A8 = 91.3. For multiple variants we use f �ðg1; g2Þ ¼
f �ðg1Þ þ f �ðg2Þ þ Acg2

1g
2
2, with Ac = 80.0 (value chosen

to prevent overlapping of twinning variants).
The elastic moduli corresponding to the MGPT po-

tential were calculated using a technique published re-
cently [10], which allows us to find the three values
with just a single simulation. The elastic moduli at
0 GPa are C11 = 287.3 GPa, C12 = 189.8 GPa and
C44 = 78.9 GPa, which are relatively close to the exper-
imental values of Cexp

11 ¼ 266:3 GPa; Cexp
12 ¼ 158:2 GPa

and Cexp
44 ¼ 87:4 GPa [11].

In a twinned structure the interface energy along the
coherent twin boundaries is much smaller than the inter-
faces in other directions. In a 2-D system, this anisot-
ropy is described by the gradient energy coefficient,
which is defined as:

jref
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0 j22
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ð7Þ

where j11 (incoherent twin boundaries) is larger than j22

(coherent twin boundaries). The value of the interfacial
energy corresponding to j22, determined via molecular
dynamics using the MGPT potential, is 0.165 J m�2,
which, compared with the first-principles value of
0.217 J m�2, provides an acceptable value. The calcula-
tion of the interfacial energy for the incoherent twin
boundary is not trivial. As an approximation we take
half of the surface energy [12], 1.6 J m�2. By using
c ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2jDf

p
=3, where c is the interfacial energy [13],

the gradient energy coefficient are calculated as
j11 = 9.17 � 10�10 J m�2, and j22 = 9.71 � 10�12 J m�2.

The kinetic coefficient is the parameter which con-
nects the real time scale to the simulation scale. An easy
way to determine it is by assigning an initial value of 1,
and running the phase field and MD simulation with
the same twin nucleus and strain field. The MD
simulations were performed in a box with dimensions
57 nm � 46 nm � 20 nm. The initial nucleus has the
dimensions of 0.8 nm � 11.5 nm � 20 nm. A match be-
tween the phase field and MD simulations gives us a ki-
netic coefficient of L = 461 m2 N�1 s�1.

The phase field simulations were performed in a square
domain with 512Dx � 512Dx grids, where Dx denotes the
grid size, chosen to be 0.1 nm, with periodic boundary con-
ditions. The parameters were normalized with the following
expressions: Dx� ¼ Dx=l; t� ¼ LjDfmaxjt; j�ij ¼

jij

l2jDfmaxj
;

C�ij ¼
Cij

jDfmaxj and f � ¼ f
jDfmaxj, where l is the characteristic

length chosen to be equal to Dx. jD fmaxj is the maximum
driving force obtained from the deformation energy curve.
The values of the dimensionless normalized parameters
are: Dx� ¼ 1:0; t� ¼ 0:001; j�11 ¼ 50:74; j�22 ¼ 0:54; C�11

¼ 159:0; C�12 ¼ 105:1 and C�44 ¼ 43:7.
The volume average of the total eigenstrain should be

equal to the homogeneous strain ��ij. Therefore, we added

a penalty term, 1
2

P
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, to the free en-

ergy term, with M11 = M22 = 1030, M12 = M21 = 3930.
The initial nucleus had an ellipsoidal shape, with a width
of 8Dx and an aspect ratio of �15, chosen to match the
MD simulations.

In Figure 3 we show some snapshots corresponding
to 0:1�1

ij. The PFM and MD simulations show a remark-
able similarity, with a strong anisotropic behavior, given
that the incoherent twin boundary growth is signifi-
cantly faster than its coherent counterpart. It verifies
the consistency of the governing equations for two dif-
ferent simulation approaches, i.e. the Liouville equation
for MD and the TDGL equation for PFM.

In Figure 4 we show the volume fraction as a function
of time. Since the slip deformation is not considered, the
equilibrium volume fraction of twins is expected to be
related to the macroscopic deformation, i.e. the homo-
geneous strain. In the growing process, as the driving
force is the dissipation of deformation energy, the larger
macroscopic deformation, the higher growth rate, as
shown in the initial growth stage of the two cases.

A phase field model for deformation twinning in bcc
metals, using tantalum as the representative material,
has been built in order to simulate the microstructure
evolution during deformation twinning. The evolution
of the order parameter, proportional to the shear strain,
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is governed by a time-dependent Ginzburg–Landau
equation, the parameters of which were determined by
MD with an MGPT potential. The twinning process is
studied under a number of deformation conditions,
and compared with the MD counterpart. The PFM
and MD simulations show remarkable similarity, a sign
of the excellent parameterization of the PFM, which can
correctly reproduce the structural evolution of deforma-
tion twinning in terms of morphology and energy
distribution.
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[8] C.J. Wu, P. Söderlind, J.N. Glosli, J.E. Klepeis, Nat.

Mater. 8 (2009) 223.
[9] Y. Mishin, A. Lozovoi, Acta Mater. 54 (2006) 5013.

[10] M. Wen, A. Barnoush, K. Yokogawa, Comput. Phys.
Commun. 182 (2011) 1621.

[11] G. Simmons, H. Wang, Single Crystal Elastic Constants
and Calculated Aggregate Properties, MIT Press, Cam-
bridge, MA, 1971.

[12] D.A. Porter, K.E. Easterling, M. Sherif, Phase Transfor-
mations in Metals and Alloys, third ed., CRC Press, Boca
Raton, FL, 2009.

[13] L.-Q. Chen, Annu. Rev. Mater. Res. 32 (2002) 113.


	Phase field model of deformation twinning in tantalum: Parameterization via molecular dynamics
	ack2
	References


